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Background SFM

e Estimate camera poses and the ground plane.
3D reconstruction and object detection are complementary. * Ground plane provides the absolute scale of
the translation. _ -
* A novel data-driven framework that Q. . 5 Ground Plane
Object Detection estimates the ground plane. '
 The framework combines multiple cues based
‘,J on per-frame observation covariance.
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SFM Camera Poses 2D Object Position Optimization Use the edges of the 2D bounding Detection score modeling allows 3D Trajectory smoothness and
Ground Plane Object Identities - 3 .+ )Log + Apgprior box as constraints. cues to adjust suboptimal 2D tracks. length ratio prior.

fm obj

* Minimize over all object poses in a window.

3D object position and orientation Y T 73D bounding box:Ft to the 20 | an be osed as extension of bundie
. O . ounding box: Fit 1o the adjustment that includes object cues

tracks assuming it is on the ground. « Use Levenberg-Marquardt like traditional
* 3D points: lie on the plane n,. bundle adjustment.

* Heading angle: nonholonomic

<f Accurate for both near and far objects

VJ Uniformly handles camera and object motions Ground truth tracks Tracked bounding boxes*
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Overall Pipeline Intensity-based Pose Alighment 2(%)  X(m)  Size(%)  Z(%)  X(m)  Size(%)  Z(%)  X(m)  Size(%)  Z(%)  X(m)  Size(%)
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Dense Feature Tracking FhetsPnP
K\ * Photo-consistency assumption.

Detection . Ground+Opt
— e 4 Dense Matches * Pose estimation without feature matching. +Det+Align
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Epipolar Guided Optical Flow Dense Feature Tracking
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Joint Visualization Relative Benefits of Cues
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e 3D Points constrains
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e Optical flow within sub-image defined by
object bounding box. * 8x8 bucketing with highest Harris Score.

SFM il " e Optical flow with epipolar constraints.  Quality control of the tracks.
* Faster speed and better accuracy.
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Camera Poses = Adaptive Ground Plane Estimation | |
e C.Kerletal. ICRA2013; N. Slesareva et al. Pattern Recognition 2005; C. Zach et al. DAGM 2007; N. Sundaram et al. ECCV 2010. A. Geiger et al. PAMI 2014; A. Geiger et al. CVPR, 2012.




