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Abstract— Environmental fluctuations pose crucial challenges
to a localization system in autonomous driving. We present a
robust LiDAR localization system that maintains its kinematic
estimation in changing urban scenarios by using a dead
reckoning solution implemented through a LiDAR inertial
odometry. Our localization framework jointly uses information
from complementary modalities such as global matching and
LiDAR inertial odometry to achieve accurate and smooth local-
ization estimation. To improve the performance of the LiDAR
odometry, we incorporate inertial and LiDAR intensity cues into
an occupancy grid based LiDAR odometry to enhance frame-
to-frame motion and matching estimation. Multi-resolution
occupancy grid is implemented yielding a coarse-to-fine ap-
proach to balance the odometry’s precision and computational
requirement. To fuse both the odometry and global matching
results, we formulate a MAP estimation problem in a pose
graph fusion framework that can be efficiently solved. An
effective environmental change detection method is proposed
that allows us to know exactly when and what portion of
the map requires an update. We comprehensively validate the
effectiveness of the proposed approaches using both the Apollo-
SouthBay dataset and our internal dataset. The results confirm
that our efforts lead to a more robust and accurate localization
system, especially in dynamically changing urban scenarios.

I. INTRODUCTION

Transportation of people and goods in the last hundred
years has changed at a drastic pace. This growth potential
in the industry attracted the attention of technology experts
who sought to solve this complex yet promising problem.
More recently, disruptive technological concepts like ride-
sharing and autonomous delivery are propelling this industry
forward, like autonomous driving [1]. One of the primary
requirements of an autonomous system is a defined mapped
area and in order to navigate autonomously, the prevalent
approach requires precise localization. But precise localiza-
tion systems are not only complex but are also difficult to
implement in a dynamically changing environment. Previous
works [2], [3], [4], [5] have demonstrated that some specific
changes in the environment, e.g. road repavements, puddles,
snowdrifts, can be overcome using existing technologies.
However, it is still one of the most challenging issues that
causes the failure of the vehicle’s localization module which
is based on matching online sensor measurements.

In this work, we seek to integrate a LiDAR inertial
odometry (LIO) together with our matching based global

*This work is supported by Baidu Autonomous Driving Technology
Department (ADT) in conjunction with the Apollo Project. Natasha Dsouza
helped with the text editing and proof reading.

The authors are with Baidu ADT, {dingwendong, houshenhua,
gaohang04, wanguowei, songshiyu}@baidu.com.

1Author to whom correspondence should be addressed, E-mail:
songshiyu@baidu.com

Day of Test Day of MapA B

C D E

0 1

Fig. 1: Online LiDAR data (brown) and the submap (occupancy
probability: blue/green/yellow) built by the LiDAR inertial odom-
etry is shown on the left of the top panel. The prebuilt localization
map marked with the probability of how likely change exists in each
cell estimated by the environmental change detection module is
shown at the bottom right of the top panel. Bottom panel: zoomed-
in view of an intersection where metal walls were recently removed.
(A) and (B) comparison of the scene at different times. (C) visual
comparison of localization results: green car (w/ LIO) vs red (w/o
LIO) vs blue (ground truth). (D) zoomed-in view of the change
detection results. (E) Updated map by merging new LiDAR scans.

LiDAR localization module. Both the measurements from
the two modules are jointly fused in a pose graph opti-
mization framework. Given the fact that map matching and
odometry are complementary methods, it allows us to deliver
a robust localization system that can overcome temporary
environmental changes or map errors in general as shown in
Figure 1, and at the same time consistently provide precise
global localization results.

To summarize, our main contributions are:

• A joint framework for vehicle localization that adap-
tively fuses global matching and local odometry cues,
which effectively shields our system from their failure
in changing urban scenes.

• A LiDAR inertial odometry that tightly couples LiDAR



and inertial measurements and incorporates both the
occupancy and LiDAR intensity cues to provide real
time accurate state estimation.

• A robust vehicle localization system that has been
rigorously tested daily in crowded and busy urban
streets demonstrating its robustness in challenging and
dynamically changing environment.

II. RELATED WORK

Long-term Localization Building a 7 days 24 hours all-
weather localization system is, by all means, a challenging
task that has received significant attention in recent years. J.
Levinson et al. [6] showed that the less reflectance caused
by wet road surface can be adjusted by normalizing the
brightness and standard deviation for each LiDAR scan. R.
Wolcott et al. [2], [3] demonstrated a robust LiDAR local-
ization system that can survive through road repavement and
snowfall by introducing a multiresolution Gaussian mixture
representation in the map. Wan et al. [5] showed that the
LiDAR localization system successfully passed a challenging
road section with newly built walls and repaved road by
incorporating the altitude cues. M. Aldibaja et al. [4] enhance
the robustness of their localization system by introducing
principal component analysis (PCA) and edge profiles, espe-
cially during rainy or snowy days. While these works focus
on solving specific problems using niche technologies, our
work seeks to have a more general solution by adaptively
fusing the complementary cues from the odometry and the
global matching module. Other works [7], [8], [9], [10],
[11] address a similar long-term localization problem but
use vision sensors that are brittle to the scene’s appearance
change caused by time, light or weather.

LiDAR Inertial Odometry There is a lot of literature
addressing the LiDAR odometry/SLAM problem [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24].
Inertial measurements help solve the problem by providing
prior estimation and compensating the motion distortion [14],
[18], [17], [19], building tighter local motion constraints
[18] or further establishing a tightly-coupled odometry [23],
[24]. In this work, we follow Hess’s work [13] and integrate
an occupancy grid based LiDAR inertial odometry into our
localization framework because of its similar map represen-
tation to our global matching module and its compatibility
to multiple laser scanners. Inspired by previous works, the
usage of inertial sensors and other extensions are introduced
for performance improvement.

Localization Fusion Methods There are several methods
related to the fusion of estimation from different sensors or
methods. One important category is loosely-coupled fusion.
Methods [25], [5], [26] leverage error-state Kalman filter
and loosely fuse the pose estimation from different methods.
Instead of using a Kalman filter, similar to [26], our method
utilizes a graph-based fusion framework, which is known to
outperform filtering methods with better accuracy per unit of
computing time [27], [28]. A. Soloviev [29] demonstrates a
tightly-coupled navigation system fusing GNSS, LiDAR and
inertial measurements.
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Fig. 2: The architecture of the proposed LiDAR inertial odometry
aided LiDAR localization system with an environmental change
detection module.

III. METHOD

This section describes the architecture of the proposed
LiDAR localization framework designed in detail as shown
in Figure 2. Our system consists of four modules: LiDAR
inertial odometry (LIO), LiDAR global matching (LGM),
pose graph based fusion (PGF) and environmental change
detection (ECD). We build our system by following the latest
LiDAR localization work by G. Wan et al. [5], and leveraging
it as a submodule, the LGM, in our framework. It is a global
localization method that matches online LiDAR scans against
a pre-built map, and conducts a 3 DoF (x, y, yaw) estimation.
The other 3 DoF (roll, pitch, altitude) can be estimated by
reading IMU gravity measurements and a digital elevation
model (DEM) map, once we successfully locate horizontally.
The other two modules, LIO and PGF, are formulated in
terms of solving different maximum a posteriori probability
(MAP) estimation problems.

The MAP estimation in this work leads to a nonlinear
optimization problem defined usually in a sliding window
considering a window of the latest measurements. Let K
denote the set of all frames in a window. The set of
states and measurements in a sliding window are denoted
as X = {xk}k∈K and Z = {zk}k∈K, respectively. The
state of frame k is represented by the orientation, position,
velocity and IMU biases, xk = [ωk, tk,vk,bk]. ωk is the
Lie algebra usually denoted as so(3). Rk = Exp(ωk) and
the pose (Rk, tk) belong to the Special Orthogonal Group
SO(3) and the Special Euclidean Group SE(3) respectively.
Exp() and Log() are the exponential and logarithmic map
associating so(3) → SO(3) and SO(3) → so(3). Velocities
are represented by vectors, i.e., vk ∈ R3. IMU biases can be
further written as bk = [bak,b

g
k], where bak,b

g
k ∈ R3 are the

accelerometer and gyroscope bias, respectively.

A. LiDAR Inertial Odometry

The LiDAR inertial odometry plays an essential role in our
system in promoting localization performance in challenging
circumstances, for example, map expiration or environmental
change due to road construction or severe weather. LiDAR
odometry estimates relative poses between frames and si-
multaneously helps us build a local map, called a submap.
This submap is always up-to-date, continuously updated with
each new LiDAR scan. Our system takes advantage of the



submap, smoothes the estimated trajectory, and also ensures
the system reliability in extreme circumstances.

Our LiDAR inertial odometry implementation follows W.
Hess’s work [13], but with a number of important exten-
sions to improve its accuracy. Firstly, the method of the
3D occupancy grid is used instead of 2D to achieve a
full 6 DoF odometry. This extension naturally allows its
application in a three-dimensional environment, such as a
parking structure or an overpass, and simplifies the under-
mentioned IMU pre-integration. Secondly, important inertial
cues are incorporated to provide motion prediction and
relative constraints between frames. More importantly, the
incorporation of the inertial cues allows us to implement the
motion compensation for the distorted LiDAR scans caused
by the moving platform. In order to make the computing
time non-intractable, we adopt pre-integration of the inertial
measurements introduced by [30] in our implementation.
Thirdly, in consideration of the rich information from lane or
road surface markers in these scenarios, the LiDAR intensity
cues are incorporated during the occupancy grid registration
as complementary to the occupancy probability of each
grid cell. It provides valuable texture information of the
environment. Finally, we apply a coarse-to-fine manner while
solving the non-linear optimization problem by introducing
multi-resolution into our occupancy grid implementation.
It not only helps the grid registration converge but also
keeps the computational requirement at bay, validated by
experimental results in Section IV-C.

We formulate the LiDAR inertial odometry as a MAP
estimation problem. The posterior probability of the state
xLk , given the previous state xLk−1, the submap Sk−1 updated
until the recent frame k − 1, and the measurements zk, is

P (xLk |zk,xLk−1,Sk−1) ∝ P (zPk |xLk ,Sk−1)

P (zIk|xLk ,xLk−1),
(1)

where zk = {zPk , zIk}, zPk and zIk are the point cloud and
inertial measurement, respectively. The superscript L denotes
that the state xLk is expressed in the local frame defined by
the submap and odometry.

Under the assumption of zero-mean Gaussian-like prob-
ability, the likelihood of the measurements are defined by
building the cost functions as:

P (zIk|xLk ,xLk−1) ∝ exp−1

2
‖rIk‖2ΛI

k
, (2)

where ‖r‖2Λ = rTΛ−1r and

P (zPk |xLk ,Sk−1) ∝
∏
i

∏
j

exp− 1

2σ2
oi

‖SSOP‖2

∏
i

∏
j

exp− 1

2σ2
ri

‖SSID‖2.
(3)

The Equation 2 is calculated according to the pre-
integration method. Please refer to [30] for details. The
Sum of Squared Occupancy Probability) SSOP and Sum of

Squared Intensity Difference) SSID represent the occupancy
grid probability and the LiDAR intensity cost, respectively,
defined as: {

SSOP = 1− P (s)

SSID =
us−I(pj)

σs
.

(4)

Given a LiDAR point pj ∈ R3, a submap with resolution
i, and a pose state xLk = [Rk, tk], the hit cell s in the
submap can be found. P (s) is the occupancy probability
of the hit cell in the submap at the desired resolution i.
This occupancy probability is maintained by keep inserting
new LiDAR scans into the submap after we maximize the
posterior P (xLk |zk,xLk−1,Sk−1). This incremental upgrading
problem is addressed by the binary Bayesian filter using the
inverse measurement model and the log odds ratio introduced
in [31]. I(pj) is the LiDAR intensity of the point pj . us
and σs are the mean and variance value of the LiDAR
intensity of the hit cell, respectively. To better ensure the
registration performance, we use cubic interpolation to obtain
the probability and the intensity values from the submap. The
variance σoi and σri are used to weight the probability and
intensity terms in the optimization at different resolutions of
the submap.

The MAP estimate corresponds to the minimum of the
negative log-posterior and the latter can be written as a sum
of squared residual errors, yielding a non-linear least squares
optimization problem. It can be minimized using iterative
algorithms (e.g. Levenberg-Marquardt, Gauss-Newton), im-
plemented in solvers, for example, Ceres [32].

B. Pose Graph Fusion

While a LiDAR inertial odometry can provide good rel-
ative constraints in the local frame, we still need global
constraints to achieve global localization. The LGM mod-
ule furnishes our system with global cues and our LGM
implementation follows [5]. These complementary local and
global cues are jointly optimized in a pose graph based fusion
framework introduced in this section.

We formulate this fusion problem as a MAP estimation
and factorize the posterior probability assuming uniform
prior distribution as:

P (X|Z) ∝
∏
k,s

P (zOks|xLk ,xSs )
∏
k

P (zIk|xLk ,xLk−1)∏
k

P (zGk |xLk ,xGL ).
(5)

The factorization can be visualized as a Bayesian network
shown in Figure 3. If we assume zero-mean Gaussian-like
probability, the likelihoods of the measurements can be
defined as:

P (zOks|xLk ,xSs ) ∝ exp− 1
2‖r

O
ks‖2ΛO

P (zIk|xLk ,xLk−1) ∝ exp− 1
2‖r

I
k‖2ΛI

k

P (zGk |xLk ,xGL ) ∝ exp− 1
2‖r

G
k ‖2ΛG

k
,

(6)



L L L L L L L

Prebuilt Localization Map

LiDAR Local
Frame PoseL

S S

Bias/Velocity

S Submap Pose

Global Pose
measurement

Local Frame

Global Frame

IMU
measurement

Local Global
Transform

G

LiDAR Submap
Relative Constraints

G

Fig. 3: The Bayesian network of the joint fusion problem. States
and measurements are plotted in different colors. The factorization
of the Bayesian network assumes uniform prior distribution.

where rOks, r
I
k and rGk are the odometry, inertial and global

residuals, respectively.
In our fusion framework, we maintain a local frame xLk

and a global state variable xGL , which transfers xLk to the
global frame. If we define xLk = [RL

k , t
L
k ], xGL = [RG

L , t
G
L ],

and the global pose measurements zGk = [RG
k , t

G
k ] output

by the LGM module [5], accordingly, we have the global
residual cost as (rGk )T = [LogT (RrG), tTrG], where:

[
RrG trG
0 1

]
=

[
RG

k tGk
0 1

]−1 [
RG

L tGL
0 1

] [
RL

k tLk
0 1

]
. (7)

With regard to the covariance ΛGk in the global residual,
we write it as

ΛG
k = diag(ΛGω ,Λ

Gh
k ,ΛGz ), (8)

where the rotation and the altitude covariance, ΛGω ∈
R3×3 and ΛGz ∈ R1×1, respectively, are constant diagonal
matrices since our LGM module only estimates the hori-
zontal localization uncertainty using a 2D histogram filter
as discussed in [5]. As shown by Equation 12 from [5], the
horizontal matching covariance matrix ΛGh

k ∈ R2×2 is calcu-
lated for each frame k accordingly. Note that the estimation
uncertainty introduced here is critical to the performance of
the localization system, yielding an adaptive fusion.

Concerning the odometry residual cost, we keep terminat-
ing old and creating new submaps as our LiDAR odometry
propagates. The relative pose constraints zOks between the
local frame and the submap output by the LIO module are
established and saved in the life cycle of the sliding window.

Similarly, if we define the submap poses xSs = [RS
s , t

S
s ],

and zOks = [RO
ks, t

O
ks], we have the odometry residual cost as

(rOks)
T = [LogT (RrO), tTrO], where

[
RrO trO
0 1

]
=

[
RO

ks tOks
0 1

]−1 [
RS

s tSs
0 1

]−1 [
RL

k tLk
0 1

]
. (9)

In terms of the covariance ΛO in the odometry residual,
we use a globally constant diagonal matrix across all frames
and submaps assuming the estimation uncertainty is evenly
distributed among all frames.

The pre-integration of the inertial constraints are treated
in the same way as introduced in [30]. The non-linear least
squares optimization is solved using the Ceres solver [32].

C. Environmental Change Detection

It is known that the LGM module relies on the freshness
of the prebuilt localization map. We always seek to find
out when it is time to update our localization map. The
submaps generated in the LIO module not only can be
used to estimate the relative pose between frames but also
can be used to detect the environmental changes. This is
crucial for a localization system, especially if we practically
consider its commercial deployment. Therefore, we build
an environmental change detection (ECD) module based
on the submaps from our LIO. Firstly, we project our 3D
multi-resolution submap onto the ground plane similar to the
localization map building procedures in [6], [2], [5]. Then, a
2D submap in the same representation format to our prebuilt
localization map is obtained. Given the localization outputs
of the system, we can overlay the submap S onto the prebuilt
mapM and the occurrence of the environmental change can
be determined by comparing them cell by cell. Let us denote
us, σs, as, um, σm, and am as the intensity mean, intensity
variance, and altitude mean of a pair of corresponding cells
in the submap and the prebuilt map, respectively. We have

zs(r) =
(us − um)2(σ2

s + σ2
m)

σ2
sσ

2
m

zs(a) = (as − am)
2
,

(10)

where zs(r) and zs(a) evaluate how likely the environmental
change exists in the cell.

We formulate the occurrence of the change within each
cell as a binary state estimation problem addressed by the
binary Bayesian filter. Similar to the occupancy grid update,
if several vehicles have passed the same area multiple times
generating more submaps, we can similarily update the
probability of the change occurrence by using a binary
Bayesian filter [31]. If we denote the occurrence of the
change within a cell as a binary state variable ds, the inverse
measurement model for updating the binary Bayesian filter
can be defined as:

P (ds|zs) = ηP (ds|zs(r))γP (ds|zs(a))1−γ , (11)

where γ is a dynamic weighting parameter that balances the
weights of the intensity and altitude cues. We can further
define their inverse measurement model by normalizing zs(r)
and zs(a) within the submap as:

{
P−1(ds|zs(r)) = 1 + exp (−β1( zs(r)−us(r)

σs(r) − θ1))

P−1(ds|zs(a)) = 1 + exp (−β2( zs(a)−us(a)
σs(a) − θ2)),

(12)
where us(r), us(a), σs(r), σs(a) are the mean and variance
of zs(r) and zs(a), respectively, aggregated in a submap. β
and θ are parameters set empirically.



IV. EXPERIMENTAL RESULTS

A. Platforms and Datasets

Our system has been extensively tested in real-world
driving scenarios primarily using two datasets, our internal
dataset, and the Apollo-SouthBay dataset [33], [34]. While
the Apollo-SouthBay dataset was collected in San Francisco
Bay Area, United States, covering a driving distance of
380.5km, our internal dataset includes the various challeng-
ing urban scenarios in Beijing, China, especially the ones
with map errors or environmental changes, such as map
expiration (gradual environment change), road construction,
closed lanes, dense traffic and so on. These challenges might
be unusual or can be avoided by altering the operational
routes in other parts of the world, but are actually quite
common and happen daily in different parts of Beijing, the
capital city of one of the largest developing countries - China.

Our vehicle platform is equipped with a Velodyne HDL-
64E 360◦ LiDAR and a NovAtel PwrPak7D-E1 GNSS RTK
receiver integrated with dual antennas and an Epson EG320N
IMU. These sensors are all mounted on a Lincoln MKZ
vehicle. The ground truth poses used in the evaluation are
generated using offline LiDAR SLAM methods typically
formulated as a large-scale global least-square optimization
problem, which are beyond the scope of this work.

B. Localization Performance

The localization performance is compared against Wan et
al. [5], in which 2-System mode is applied because LiDAR-
based localization is our primary focus. Our quantitative
analysis includes horizontal and heading errors with both
RMS and maximum values. The horizontal errors are fur-
ther decomposed to longitudinal (Long.) and lateral (Lat.)
directions in Table II. The percentages of frames where the
system achieves better than 0.1m, 0.2m, 0.3m or 0.1◦ in
horizontal or heading estimations are shown in the tables.

Apollo-SouthBay Dataset The quantitative analysis using
the Apollo-SouthBay dataset is shown in Table I. Overall,
our system is comparable to [5] under all metrics. Note,
that our system achieves better maximum horizontal and yaw
RMS errors in most of the data sequences demonstrating the
benefits of new design in challenging scenarios particularly.

Internal Dataset The quantitative analysis using the in-
ternal dataset is shown in Table II. Overall, note our per-
formance improvement over [5] by having the new LiDAR
inertial odometry aided framework.

To further illustrate the benefits obtained, Figure 4 shows
sample outputs of the system from a few frames in the
dataset. In Figure 4 (a) and (b) from Seq. DXH-02 and
DXH-03, respectively, there are long-term seasonal changes
in the environment. The driving test was taken in winter,
while the map was built in summer as shown on the top
panel. The bottom panel shows the localization status of the
LGM module during these situations. It clearly demonstrates
that the newly added LIO module can help localization to
account for unstable global matching. The global matching
uncertainty estimated by the histogram filters in the LGM

Area Method Horiz.
RMS

Horiz.
Max

< 0.1m
Pct.

Yaw.
RMS

< 0.1◦
Pct.

BaylandsToSeafood [5] 0.036 0.203 98.87% 0.055 86.60%
Ours 0.041 0.150 99.05% 0.042 90.16%

ColumbiaPark [5] 0.046 0.160 96.46% 0.081 67.27%
Ours 0.046 0.143 95.79% 0.095 55.88%

Highway237 [5] 0.048 0.196 93.18% 0.070 76.83%
Ours 0.049 0.129 96.86% 0.026 98.40%

MathildaAVE [5] 0.040 0.179 98.67% 0.059 83.37%
Ours 0.048 0.139 99.08% 0.076 75.36%

SanJoseDowntown [5] 0.058 0.290 87.47% 0.052 87.57%
Ours 0.056 0.264 90.46% 0.045 91.03%

SunnyvaleBigLoop [5] 0.069 0.368 80.86% 0.081 69.52%
Ours 0.075 0.306 78.72% 0.077 74.76%

TABLE I: Quantitative comparison using the Apollo-SouthBay
dataset. The lower maximum horizontal errors demonstrate that
the proposed designs smooth the trajectories and make our system
reliable in extreme circumstances.

module shown in the bottom left view of the bottom panel
is the key to accomplish an adaptive LIO and LGM fusion.
Figure 4 (c) (d) and (e) shows the benefits from LIO module
in a similar way. In Figure 4 (c) from Seq. YF-01 shows
metal walls were removed and crosswalks are repainted on
the road. Figure 4 (d) from Seq. MXH, there are newly
built walls on the left that are quite common when road
construction happens. Figure 4 (e) from Seq. YF-04 shows a
challenging case with many heavy trucks on a narrow road.

Run-time Analysis In our system, the LIO and PGF
modules run on the CPU (Intel Xeon 3.5GHz CPU and 32GB
RAM), while the LGM module runs on an FPGA card. It
takes 44.9ms, 79.4ms, 2.8ms in LGM, LIO, and PGF module,
respectively. Note, that the LGM and LIO modules actually
run parallelly. Therefore, the entire system takes about 82ms
per frame on average, yielding a real time system.

C. Ablations

In order to comprehensively verify the effectiveness of
the proposed LIO module, we conduct several ablation
experiments using our internal dataset.

LIO Drift To evaluate the performance of the LIO module
individually, we manually disable the LGM module after
system initialization. We adopt the widely used KITTI odom-
etry benchmark metrics [35] evaluated by using the original
toolkit, The LIO module obtains an average translation error
of 0.9309% and rotation error of 0.0057deg/m, respectively.

Intensity Cue and Multi-Resolution In Section III, we
introduce the intensity cue and the multi-resolution occu-
pancy grid as our extensions to the LiDAR inertial odometry
implementation. To demonstrate the effectiveness of each of
the above contributions, we evaluate the localization accuracy
with different settings in Table III. Evidently, the accuracy is
improved when we incorporate the intensity cue or finer and
more resolutions are used in our submap implementation.

D. Environmental Change Detection

Environmental changes can be detected by comparing the
submaps generated by the LIO module against the prebuilt
map. As shown in Figure 1, the likelihood environmental



Scenes Dist.
(km)

Method Horiz.
RMS

Horiz.
Max

Long.
RMS

Long.
Max

Lat.
RMS

Lat.
Max

< 0.1m
Pct.

< 0.2m
Pct.

< 0.3m
Pct.

DXH-01 11.03 [5] 0.056 0.803 0.037 0.311 0.034 0.740 91.42% 99.08% 99.50%
Ours 0.048 0.472 0.029 0.196 0.031 0.459 95.31% 99.07% 99.44%

DXH-02 1.693 [5] 0.087 0.870 0.052 0.666 0.063 0.735 76.67% 94.02% 99.44%
Ours 0.074 0.260 0.041 0.142 0.054 0.256 81.49% 94.31% 100.0%

DXH-03 1.615 [5] 0.093 0.402 0.080 0.401 0.036 0.202 61.54% 99.20% 99.93%
Ours 0.085 0.168 0.076 0.167 0.033 0.111 72.76% 100.0% 100.0%

MXH 2.563 [5] 0.086 1.669 0.047 1.023 0.064 1.421 68.75% 99.15% 99.18%
Ours 0.069 0.223 0.036 0.126 0.052 0.223 89.52% 99.52% 100.0%

YZ-01 7.263 [5] 0.070 2.841 0.045 0.233 0.046 2.836 85.43% 99.12% 99.65%
Ours 0.063 0.313 0.047 0.184 0.034 0.294 91.66% 99.26% 99.96%

YZ-02 4.638 [5] 0.069 0.336 0.039 0.194 0.050 0.316 77.61% 99.61% 99.92%
Ours 0.062 0.274 0.040 0.169 0.041 0.251 86.43% 99.60% 100.0%

YZ-03 2.567 [5] 0.064 0.235 0.046 0.190 0.037 0.228 83.88% 99.71% 100.0%
Ours 0.059 0.250 0.043 0.250 0.032 0.186 92.04% 99.92% 100.0%

YZ-04 0.911 [5] 0.177 1.111 0.129 0.982 0.105 1.010 53.95% 80.16% 84.45%
Ours 0.085 0.365 0.065 0.186 0.042 0.361 68.63% 95.53% 98.44%

TABLE II: Quantitative comparison using our internal dataset. The benefits of the LiDAR inertial odometry are clearly visible from the
localization accuracy enhancement.
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Day of Test

(d)

Day of Test

Day of Map

Fig. 4: Top panel: (a) and (b) long-term seaonal changes from DXH-02 and DXH-03, respectively. The driving test was taken in winter,
while the map was built in summer. (c) metal walls were removed and crosswalks are repainted from YF-01. (d) new walls were built
on the left from MXH. (e) dynamic objects, such as many heavy trucks, on a narrow road from YF-04. Bottom panel: visual comparison
of localization results. Green cars are the fused results estimated in our joint optimization framework. Red cars are the results generated
only by the LGM module. Blue cars are the ground truth. When the green cars perfectly overlap with the blue ones (can not be seen),
the results are accurate. The bottom left view in the bottom panel depicts the histogram filter response in the LGM module.

Method Translation (%) Rotation (deg/m)

Ours w/ Intensity 0.9309 0.0057
{0.125, 0.25, 0.6, 1.2} 0.9498 0.0057
{0.125} 0.9520 0.0058
{0.6} 1.7637 0.0102

TABLE III: Comparison w/o the intensity cue or multi-resolution.
Note that using coarser or single resolution grid gives worse results.
Ours with the intensity cue yields the best odometry accuracy.

change exists in each map cell is marked on the map using
a rainbow scale bar. An intersection where metal walls were
recently removed is zoomed-in to further demonstrate the
details of environmental change detection results.

V. CONCLUSION

We have presented a robust LiDAR localization frame-
work, designed for autonomous driving applications, espe-

cially countering the localization challenges in changing city
scenes. The proposed method utilizes a pose graph based
fusion framework adaptively incorporating results from both
the LiDAR inertial odometry and global matching modules.
It has been shown that the newly added LiDAR inertial
odometry module can effectively aid the localization system
in the prevention of localization errors caused by the global
matching failure. We also propose an environmental change
detection method to find out when and what portion of the
map should be promptly updated in order to reliably support
the daily operation of our large autonomous driving fleet in
crowded city streets, despite road construction that may have
occurred from time to time. These distinct advantages make
our system quite attractive to real commercial deployment.
In a further extension of this work, we plan to explore
learning-based environmental change detection methods for
comparison.
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