
DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration

Weixin Lu Guowei Wan Yao Zhou Xiangyu Fu Pengfei Yuan Shiyu Song⇤

Baidu Autonomous Driving Technology Department (ADT)
{luweixin, wanguowei, zhouyao, fuxiangyu, yuanpengfei, songshiyu}@baidu.com

Abstract

We present DeepVCP - a novel end-to-end learning-

based 3D point cloud registration framework that achieves

comparable registration accuracy to prior state-of-the-art

geometric methods. Different from other keypoint based

methods where a RANSAC procedure is usually needed, we

implement the use of various deep neural network struc-

tures to establish an end-to-end trainable network. Our

keypoint detector is trained through this end-to-end struc-

ture and enables the system to avoid the interference of dy-

namic objects, leverages the help of sufficiently salient fea-

tures on stationary objects, and as a result, achieves high

robustness. Rather than searching the corresponding points

among existing points, the key contribution is that we inno-

vatively generate them based on learned matching proba-

bilities among a group of candidates, which can boost the

registration accuracy. We comprehensively validate the ef-

fectiveness of our approach using both the KITTI dataset

and the Apollo-SouthBay dataset. Results demonstrate that

our method achieves comparable registration accuracy and

runtime efficiency to the state-of-the-art geometry-based

methods, but with higher robustness to inaccurate initial

poses. Detailed ablation and visualization analysis are in-

cluded to further illustrate the behavior and insights of our

network. The low registration error and high robustness of

our method make it attractive to the substantial applications

relying on the point cloud registration task.

1. Introduction

Recent years has seen a breakthrough in deep learning
that has led to compelling advancements in most seman-
tic computer vision tasks, such as classification [22], de-
tection [15, 32] and segmentation [24, 2]. A number of
works have highlighted that these empirically defined prob-
lems can be solved by using DNNs, yielding remarkable
results and good generalization behavior. The geometric
problems that are defined theoretically, which is another

⇤Author to whom correspondence should be addressed

(a) Source and target PCs and source keypoints

(d) Final registration result

(b) Search region of keypoints

(c) Generated target matched points

Figure 1. The illustration of the major steps of our proposed end-
to-end point cloud registration method: (a) The source (red) and
target (blue) point clouds and the keypoints (black) detected by
the point weighting layer. (b) A search region is generated for
each keypoint and represented by grid voxels. (c) The matched
points (magenta) generated by the corresponding point generation
layer. (d) The final registration result computed by performing
SVD given the matched keypoint pairs.

important category of the problem, has seen many recent
developments with emerging results in solving vision prob-
lems, including stereo matching [47, 5], depth estimation
[36] and SFM [40, 51]. But it has been observed, for tasks
using 3D point clouds as input, for example, the 3D point
cloud registration task, experiential solutions of most recent
attempts [49, 11, 7] have not been adequate, especially in
terms of local registration accuracy.

Point cloud registration is a task that aligns two or more
different point clouds collected by LiDAR (Light Detec-
tion and Ranging) scanners by estimating the relative trans-
formation between them. It is a well-known problem and
plays an essential role in many applications, such as Li-
DAR SLAM [50, 8, 19, 27], 3D reconstruction and mapping
[38, 10, 45, 9], positioning and localization [48, 20, 42, 25],
object pose estimation [43] and so on.

LiDAR point clouds have innumerable unique aspects
that can enhance the complexity of this particular problem,
including the local sparsity, large amount of data generated
and the noise caused by dynamic objects. Compared to the
image matching problem, the sparsity of the point cloud

makes finding two exact matching points from the source
and target point clouds usually infeasible. It also increases
the difficulty of feature extraction due to the large appear-
ance difference of the same object viewed by a laser scan-
ner from different perspectives. The millions of points pro-
duced every second requires highly efficient algorithms and
powerful computational units. ICP and its variants have rel-
atively good computational efficiency, but are known to be
susceptible to local minima, therefore, rely on the quality of
the initialization. Finally, appropriate handling of the inter-
ference caused by the noisy points of dynamic objects typi-
cally is crucial for delivering an ideal estimation, especially
when using real LiDAR data.

In this work, titled “DeepVCP” (Virtual Corresponding
Points), we propose an end-to-end learning-based method
to accurately align two different point clouds. The name
DeepVCP accurately captures the importance of the virtual
corresponding point generation step which is one of the key
innovative designs proposed in our approach. An overview
of our framework is shown in Figure 1.

We first extract semantic features of each point both from
the source and target point clouds using the latest point
cloud feature extraction network, PointNet++ [31]. They
are expected to have certain semantic meanings to empower
our network to avoid dynamic objects and focus on those
stable and unique features that are good for registration.
To further achieve this goal, we select the keypoints in the
source point cloud that are most significant for the registra-
tion task by making use of a point weighting layer to assign
matching weights to the extracted features through a learn-
ing procedure. To tackle the problem of local sparsity of the
point cloud, we propose a novel corresponding point gener-
ation method based on a feature descriptor extraction proce-
dure using a mini-PointNet [30] structure. We believe that it
is the key contribution to enhance registration accuracy. Fi-
nally, besides only using the L1 distance between the source
keypoint and the generated corresponding point as the loss,
we propose to construct another corresponding point by in-
corporating the keypoint weights adaptively and executing
a single optimization iteration using the newly introduced
SVD operator in TensorFlow. The L1 distance between the
keypoint and this newly generated corresponding point is
again used as another loss. Unlike the first loss using only
local similarity, this newly introduced loss builds the uni-
fied geometric constraints among local keypoints. The end-
to-end closed-loop training allows the DNNs to generalize
well and select the best keypoints for registration.

To summarize, our main contributions are:

• To the best of our knowledge, our work is the first end-
to-end learning-based point cloud registration frame-
work yielding comparable results to prior state-of-the-
art geometric ones.

• Our learning-based keypoint detection, novel corre-

sponding point generation method and the loss func-
tion that incorporates both the local similarity and the
global geometric constraints to achieve high accuracy
in the learning-based registration task.

• Rigorous tests and detailed ablation analysis using the
KITTI [13] and Apollo-SouthBay [25] datasets to fully
demonstrate the effectiveness of the proposed method.

2. Related Work

The survey work from F. Pomerleau et al. [29] provides a
good overview of the development of traditional point cloud
registration algorithms. [3, 37, 26, 39, 44] are some repre-
sentative works among them. A discussion of the full liter-
ature of the these methods is beyond the scope of this work.

The attempt of using learning based methods starts by
replacing each individual component in the classic point
cloud registration pipeline. S. Salti et al. [35] proposes to
formulate the problem of 3D keypoint detection as a binary
classification problem using a pre-defined descriptor, and
attempts to learn a Random Forest [4] classifier that can find
the appropriate keypoints that are good for matching. M.
Khoury et al. [21] proposes to first parameterize the input
unstructured point clouds into spherical histograms, then
a deep network is trained to map these high-dimensional
spherical histograms to low-dimensional descriptors in Eu-
clidean space. In terms of the method of keypoint detection
and descriptor learning, the closest work to our proposal
is [46]. Instead of constructing an End-to-End registration
framework, it focuses on joint learning of keypoints and de-
scriptors that can maximize local distinctiveness and simi-
larity between point cloud pairs. G. Georgakis et al. [14]
solves a similar problem for RGB-D data. Depth images
are processed by a modified Faster R-CNN architecture for
joint keypiont detection and descriptor estimation. Despite
the different approaches, they all focus on the representation
of the local distinctiveness and similarity of the keypoints.
During keypoint selection, content awareness in real scenes
is ignored due to the absence of the global geometric con-
straints introduced in our end-to-end framework. As a re-
sult, keypoints on dynamic objects in the scene cannot be
rejected in these approaches.

Some recent works [49, 11, 7, 1] propose to learn 3D
descriptors leveraging the DNNs, and attempt to solve the
3D scene recognition and re-localization problem, in which
obtaining accurate local matching results is not the goal. In
order to achieve that, methods, as ICP, are still necessary for
the registration refinement.

M. Velas et al. [41] encodes the 3D LiDAR data into
a specific 2D representation designed for multi-beam me-
chanical LiDARs. CNNs is used to infer the 6 DOF poses
as a classification or regression problem. An IMU assisted
LiDAR odometry system is built upon it. Our approach pro-
cesses the original unordered point cloud directly and is de-

signed as a general point cloud registration solution.

3. Method

This section describes the architecture of the proposed
network designed in detail as shown in Figure 2.

3.1. Deep Feature Extraction

The input of our network consists of the source and tar-
get point cloud, the predicted (prior) transformation, and the
ground truth pose required only during the training stage.
The first step is extracting feature descriptors from the point
cloud. In the proposed method, we extract feature descrip-
tors by applying a deep neural network layer, denoted as
the Feature Extraction (FE) Layer. As shown in Figure 2,
we feed the source point cloud, represented as an N1 ⇥ 4
tensor, into the FE layer. The output is an N1 ⇥ 32 tensor
representing the extracted local feature. The FE layer we
used here is PointNet++ [31] which is a poineer work ad-
dressing the issue of consuming unordered points in a net-
work architecture. We are also considering to try rotation
invariant 3D descriptors [6, 16, 23] in the future.

These local features are expected to have certain seman-
tic meanings. Working together with the weighting layer
to be introduced next, we expect our end-to-end network to
be capable to avoid the interference from dynamic objects
and deliver precise registration estimation. In Section 4.4,
we visualize the selected keypoints and demonstrate that the
dynamic objects are successfully avoided.

3.2. Point Weighting

Inspired by the attention layer in 3DFeatNet [46], we de-
sign a point weighting layer to learn the saliency of each
point in an end-to-end framework. Ideally, points with in-
variant and distinct features on static objects should be as-
signed higher weights.

As shown in Figure 2, N1 ⇥ 32 local features from the
source point cloud are fed into the point weighting layer.
The weighting layer consists of a multi-layer perceptron
(MLP) of 3 stacking fully connected layers and a top k op-
eration. The first two fully connected layers use the batch
normalization and the ReLU activation function, and the
last layer omits the normalization and applies the softplus

activation function. The most significant N points are se-
lected as the keypoints through the top k operator and their
learned weights are used in the subsequent processes.

Our approach is different from 3DFeatNet [46] in a few
ways. First, the features used in the attention layer are ex-
tracted from local patches, while ours are semantic features
extracted directly from the point cloud. We have greater
receptive fields learned from an encoder-decoder style net-
work (PointNet++ [31]). Moreover, our weighting layer
does not output a 1D rotation angle to determine the fea-
ture direction, because our design of the feature embedding

layer in the next section uses a symmetric and isotropic net-
work architecture.

3.3. Deep Feature Embedding

After extracting N keypoints from the source point
cloud, we seek to find the corresponding points in the tar-
get point cloud for the final registration. In order to achieve
this, we need a more detailed feature descriptor that can bet-
ter represent their geometric characteristics. Therefore, we
apply a deep feature embedding (DFE) layer on their neigh-
borhood points to extract these local features. The DFE
layer we used is a mini-PointNet [30, 7, 25] structure.

Specifically, we collect K neighboring points within a
certain radius d of each keypoint. In case that there are less
than K neighboring points, we simply duplicate them. For
all the neighboring points, we use their local coordinates
and normalize them by the searching radius d. Then, we
concatenate the FE feature extracted in Section 3.1 with the
local coordinates and the LiDAR reflectance intensities of
the neighboring points as the input to the DFE layer.

The mini-PointNet consists of a multi-layer perceptron
(MLP) of 3 stacking fully connected layers and a max-

pooling layer to aggregate and obtain the feature descrip-
tor. As shown in Figure 2, the input of the DFE layer is an
N ⇥ K ⇥ 36 vector, which refers to the local coordinate,
the intensity, and the 32-dimensional FE feature descriptor
of each point in the neighborhood. The output of the DFE
layer is again a 32-dimensional vector. In Section 4.3, we
show the effectiveness of the DFE layer and how it help im-
prove the registration precision significantly.

3.4. Corresponding Point Generation

Similar to ICP, our approach also seeks to find corre-
sponding points in the target point cloud and estimate the
transformation. The ICP algorithm chooses the closest
point as the corresponding point. This prohibits backprop-
agation as it is not differentiable. Furthermore, there are
actually no exact corresponding points in the target point
cloud to the source due to its sparsity nature. To tackle
the above problems, we propose a novel network structure,
the corresponding point generation (CPG) layer, to gener-
ate corresponding points from the extracted features and the
similarity represented by them.

We first transform the keypoints from the source point
cloud using the input predicted transformation. Let
{xi, x0

i}, i = 1, · · · , N denote the 3D coordinate of the key-
point from the source point cloud and its transformation in
the target point cloud, respectively. In the neighborhood
of x0

i, we divide its neighboring space into (2rs + 1, 2r
s +

1, 2r
s + 1) 3D grid voxels, where r is the searching radius

and s is the voxel size. Let us denote the centers of the 3D
voxels as {y0j}, j = 1, · · · , C, which are considered as the
candidate corresponding points. We also extract their DFE

𝑁 2
×
4

𝑁 1
×
4

Deep Feature
Extraction Layer

Source & Target
Point Clouds

So
ur

ce
Ta

rg
et

𝑁 2
×
32

𝑁 1
×
32

Point-wise Feature

𝑁
×
4

𝑁 × 𝐾 × 36

Sample
Candidates

𝑁
×
𝐶
×
4

𝑁 × 𝐶 × 𝐾 × 36

Weighting Layer GT
 T

ar
ge

t
Ke

yp
oi

nt
s

𝑁
×
32

𝑁
×
𝐶
×
32

𝑁
×
3

𝑁
×
3

Corresponding Point
Generation Layer

Source & Target
KeypointsConcat

Concat

𝑁
×
3

Same

Deep Feature
Embedding Layer

𝑁
×
3

W
ei

gh
te

d
Lo

ss

Re
fin

ed
 T

ar
ge

t
Ke

yp
oi

nt
s

Predicted Relative Pose
Generated

Relative Pose

GT Relative Pose

M
axPool

MLP(32 × 32 × 32)

Shared

DFE Layer

SoftPlus

Top K

MLP(16 × 8 × 1)

Shared

Weighting Layer
(16, 3, 1)

SoftM
ax

Weights
Matrix

(4, 3, 1)

(1, 3, 1)

Weighted
Sum

Target Candidates

3D CNNs

CPG Layer

Figure 2. The architecture of the proposed end-to-end learning network for 3D point cloud registration, DeepVCP. The source and target
point clouds are fed into the deep feature extraction layer, then N keypoints are extracted from the source point cloud by the weighting
layer. N ⇥ C candidate corresponding points are selected from the target point cloud, followed by a deep feature embedding operation.
The corresponding keypoints in the target point cloud are generated by the corresponding points generation layer. Finally, we propose to
use the combination of two losses those encode both the global geometric constraints and local similarities.

feature descriptors as we did in Section 3.3. The output is
an N ⇥ C ⇥ 32 tensor. Similar to [25], those tensors rep-
resenting the extracted DFE features descriptors from the
source and target are fed into a three-layer 3D CNNs, fol-
lowed by a softmax operation, as shown in Figure 2. The
3D CNNs can learn a similarity distance metric between
the source and target features, and more importantly, it can
smooth (regularize) the matching volume and suppress the
matching noise. The softmax operation is applied to convert
the matching costs into probabilities.

Finally, the target corresponding point yi is calculated
through a weighted-sum operation as:

yi =
1

PC
j=1 wj

CX

j=1

wj · y0j , (1)

where wj is the similarity probability of each candidate
corresponding point y0j . The computed target corresponding
points are represented by a N ⇥ 3 tensor.

Compared to the traditional ICP algorithm that relied on
the iterative optimization or the methods [33, 7, 49] which
search the corresponding points among existing points from
the target point cloud and use RANSAC to reject outliers,
our approach utilizes the powerful generalization capability
of CNNs in similarity learning, to directly “guess” where
the corresponding points are in the target point cloud. This
eliminates the use of RANSAC, reduces the iteration times
to 1, significantly reduces the running time, and achieves
fine registration with high precision.

Another implementation detail worth mentioning is that
we conduct a bidirectional matching strategy during infer-
ence to improve the registration accuracy. That is, the input
point cloud pair is considered as the source and target simul-
taneously. While we do not do this during training, because
this does not improve the overall performance of the model.

3.5. Loss

For each keypoint xi from the source point cloud, we can
calculate its corresponding ground truth ȳi with the given
ground truth transformation (R̄, T̄). Using the estimated
target corresponding point yi in Section 3.4, we can directly
compute the L1 distance in the Euclidean space as a loss:

Loss1 =
1

N

NX

i=1

|ȳi � yi|. (2)

If only the Loss1 in Equation 2 is used, the keypoint
matching procedure during the registration is independent
for each one. Consequently, only the local neighboring con-
text is considered during the matching procedure, while the
registration task is obviously constrained with a global ge-
ometric transform. Therefore, it is essential to introduce
another loss including global geometric constraints.

Inspired by the iterative optimization in the ICP algo-
rithm, we perform a single optimization iteration. That is,
we perform a singular value decomposition (SVD) step to
estimate the relative transformation given the correspond-
ing keypoint pairs {xi, yi}, i = 1, · · · , N , and the learned

weights from the weighting layer. Following an outlier re-
jection step, where 20% point pairs are rejected given the
estimated transformation, another SVD step is executed to
further refine the estimation (R, T). Then the second loss
in our network is defined as:

Loss2 =
1

N

NX

i=1

|ȳi � (Rxi + T)|. (3)

Thanks to [18], the latest Tensorflow has supported the
SVD operator and its backpropagation. This ensures that
the proposed network can be trained in an end-to-end pat-
tern. As a result, the combined loss is defined as:

Loss = ↵Loss1 + (1� ↵)Loss2, (4)

where ↵ is the balancing factor. In Section 4.3, we demon-
strate the effectiveness of our loss design. It has been tested
that the convergence rate is faster and the accuracy is higher
when the L1 loss is applied.

It is worth to note that the estimated corresponding key-
points yi are actually constantly being updated together
as the estimated transformation (R, T) during the training.
When the network converges, the estimated corresponding
keypoints become unlimitedly close to the ground truth. It is
interesting that this training procedure is actually quite sim-
ilar to the classic ICP algorithm. While the network only
needs a single iteration to find the optimal corresponding
keypoint and then estimate the transformation during infer-
ence, which is very valuable.

3.6. Dataset Specific Refinement

Moreover, we find that there are some characteristics in
KITTI and Apollo-SouthBay datasets that can be utilized
to further improve the registration accuracy. Experimental
results using many different datasets are introduced in the
supplemental material. This specific network duplication
method is not applied in these datasets.

Because the point clouds from Velodyne HDL64 are dis-
tributed within a relatively narrow region in the z-direction,
the keypoints constraining the z-direction are usually quite
different from the other two, such as the points on the
ground plane. This causes the registration precision at the z,
roll and pitch directions to decline. To tackle this problem,
we actually duplicate the whole network structure as shown
in Figure 2, and use two copies of the network in a cascade
pattern. The back network uses the estimated transforma-
tion from the front network as the input, but replaces the 3D
CNNs in the CPG step of the latter with a 1D one sampling
in the z direction only. Both the networks share the same FE
layer, becasue we do not want to extract FE features twice.
This increases the z, roll and pitch’s estimation precision.

4. Experiments

4.1. Benchmark Datasets

We evaluate the performance of the proposed network
using 11 training sequences of the KITTI odometry dataset
[13]. The KITTI dataset contains point clouds captured
with a Velodyne HDL64 LiDAR in Karlsruhe, Germany to-
gether with the “ground truth” poses provided by a high-
end GNSS/INS integrated navigation system. We split the
dataset into two groups, the training, and the testing. The
training group includes 00-07 sequences, and the testing in-
cludes 08 - 10 sequences.

Another dataset that is used for evaluation is the Apollo-
SouthBay dataset [25]. It collected point clouds using the
same model of LiDAR as the KITTI dataset, but, in the
San Francisco Bay area, United States. Similar to KITTI,
it covers various scenarios including residential areas, ur-
ban downtown areas, and highways. We also find that the
“ground truth” poses in Apollo-SouthBay is more accurate
than KITTI odometry dataset. Some ground truth poses
in KITTI involve larger errors, for example, the first 500
frames in Sequence 08. Moreover, the mounting height
of the LiDAR in Apollo-SouthBay is slightly higher than
KITTI. This allows the LiDAR to see larger areas in the z
direction. We find that the keypoints picked up in these high
regions sometimes are very helpful for registration. The
setup of the training and test sets is similar to [25] with the
mapping portion discarded. There is no overlap between the
training and testing data. Refer to the supplemental material
for additional experimental results using more challenging
datasets.

The initial poses are generated by adding random noises
to the ground truth. In KITTI and Apollo-SouthBay, we
added a uniformly distributed random error of [0 ⇠ 1.0]m in
x-y-z dimension, and a random error of [0 ⇠ 1.0]� in roll-
pitch-yaw dimension. The models in different datasets
are trained separately. Refer to the supplemental material
where we evaluate robustness given inaccurate initial poses
using other datasets.

4.2. Performance

Baseline Algorithms We present extensive performance
evaluation by comparing with a few point cloud registra-
tion algorithms based on geometry. They are: (i) The ICP
family, such as ICP [3], G-ICP [37], and AA-ICP [28]; (ii)
NDT-P2D [39]; (iii) GMM family, such as CPD [26]; (iv)
The learning-based method, 3DFeat-Net [46]. The imple-
mentations of ICP, G-ICP, AA-ICP, and NDT-P2D are from
the Point Cloud Library (PCL) [34]. Gadomski‘s imple-
mentation [12] of the CPD method is used and the original
3DFeat-Net implementation with RANSAC for the registra-
tion task is used.

Evaluation Criteria The evaluation is performed by

calculating the angular and translational error of the es-
timated relative transformation (R, T) against the ground
truth (R̄, T̄). The chordal distance [17] between R and R̄
is calculated via the Frobenius norm of the rotation matrix,
denoted as ||R� R̄||F . The angular error ✓ then can be cal-
culated as ✓ = 2 sin�1(||R�R̄||Fp

8
). The translational error is

calculated as the Euclidean distance between T and T̄ .

KITTI Dataset We sample the input source LiDAR
scans at 30 frame intervals and enumerate its registration
target within 5m distance to it. The original point cloud
in the dataset includes about 108, 000 points/frame. We
use original point clouds for methods such as ICP, G-ICP,
AA-ICP, NDT, and 3DFeat-Net. To keep CPD‘s comput-
ing time not intractable, we downsample the point clouds
using a voxel size of 0.1m leaving about 50, 000 points on
average. The statistics of the running time of all the meth-
ods are shown in Figure 3. For our proposed method, we
evaluate two versions. One is the base version, denoted
as “Ours-Base”, that infers all the degree of freedoms x,
y, z, roll, pitch, and yaw at once. The other is an im-
proved version with network duplication as we discussed
in Section 3.6, denoted as “Ours-Duplication”. The angu-
lar and translational errors of all the methods are listed in
Table 1. As can be seen, for the KITTI dataset, DeepVCP
achieves comparable registration accuracy with regards to
most geometry-based methods like AA-ICP, NDT-P2D, but
performs slightly worse than G-ICP and ICP, especially for
the angular error. The lower maximum angular and trans-
lational errors show that our method has good robustness
and stability, therefore it has good potential in significantly
improving the overall system performance for large point
cloud registration tasks.

Method Angular Error(�) Translation Error(m)
Mean Max Mean Max

ICP-Po2Po [3] 0.139 1.176 0.089 2.017
ICP-Po2Pl [3] 0.084 1.693 0.065 2.050
G-ICP [37] 0.067 0.375 0.065 2.045
AA-ICP [28] 0.145 1.406 0.088 2.020
NDT-P2D [39] 0.101 4.369 0.071 2.000
CPD [26] 0.461 5.076 0.804 7.301
3DFeat-Net [46] 0.199 2.428 0.116 4.972

Ours-Base 0.195 1.700 0.073 0.482
Ours-Duplication 0.164 1.212 0.071 0.482

Table 1. Comparison using the KITTI dataset. Our performance is
comparable against traditional geometry-based methods and bet-
ter than the learning-based method, 3DFeat-Net. The much lower
maximum errors demonstrate good robustness.

Apollo-SouthBay Dataset In Apollo-SouthBay dataset,
we sample at 100 frame intervals, and again enumerate the
target within 5m distance. All other parameter settings for
each individual method are the same as the KITTI dataset.

The angular and translational errors are listed in Table 2.
For the Apollo-SouthBay dataset, most methods includ-
ing ours have a performance improvement, which might
be due to the better ground truth poses provided by the
dataset. Our system with the duplication design achieves
the second-best mean translational accuracy and compara-
ble angular accuracy with regards to other traditional meth-
ods. Additionally, the lowest maximum translational error
demonstrates good robustness and stability of our proposed
learning-based method.

Method Angular Error(�) Translation Error(m)
Mean Max Mean Max

ICP-Po2Po [3] 0.051 0.678 0.089 3.298
ICP-Po2Pl [3] 0.026 0.543 0.024 4.448
G-ICP [37] 0.025 0.562 0.014 1.540
AA-ICP [28] 0.054 1.087 0.109 5.243
NDT-P2D [39] 0.045 1.762 0.045 1.778
CPD [26] 0.054 1.177 0.210 5.578
3DFeat-Net [46] 0.076 1.180 0.061 6.492

Ours-Base 0.135 1.882 0.024 0.875

Ours-Duplication 0.056 0.875 0.018 0.932

Table 2. Comparison using the Apollo-SouthBay dataset. Our
system achieves the second best mean translational error and the
lowest maximum translational error. The low maximum errors
demonstrate good robustness of our method.

Run-time Analysis We evaluate the runtime perfor-
mance of our framework with a GTX 1080 Ti GPU, Core
i7-9700K CPU, and 16GB Memory as shown in Figure 3.
The total end-to-end inference time of our network is about
2 seconds for registering a frame pair with the duplication
design in Section 3.6. Note that DeepVCP is significantly
faster than the other learning-based approach, 3DFeat-Net
[46], because we extract only 64 keypoints instead of 1024,
and do not rely on a RANSAC procedure.

8.
17

2.
92 6.

92

5.
24 8.
73

32
41

.2
9

15
.0
2

2.
36.

33

1.
69 3.

94 4.
25 7.
44

25
66

.0
2

11
.9
2

2.
07

1

10

100

1000

10000

ICP-Po2Po

ICP-Po2Pl
G-IC

P
AA-IC

P

NDT-P2D
CPD

3DFeat-N
et

Ours

Kitti Dataset Apollo-SouthBay Dataset

(s)

Figure 3. The running time performance analysis of all the meth-
ods. The total end-to-end inference time of our network is about 2
seconds for registering a frame pair.

4.3. Ablations

In this section, we use the same training and testing data
from the Apollo-SouthBay dataset to further evaluate each
component or proposed design in our work.

Deep Feature Embedding In Section 3.3, we propose
to construct the network input by concatenating the FE fea-
ture together with the local coordinates and the intensities of
the neighboring points. Now, we take a deeper look at this
design choice by conducting the following experiments: i)
LLF-DFE: Only the local coordinates and the intensities are
used; ii) FEF-DFE: Only the FE feature is used; iii) FEF:
The DFE layer is discarded. The FE feature is directly used
as the input to the CPG layer. In the target point cloud, the
FE features of the grid voxel centers are interpolated. It is
seen that the DFE layer is crucial to this task as there is
severe performance degradation without it as shown in Ta-
ble 3. The LLF-DFE and FEF-DFE give competitive results
while our design gives the best performance.

Method Angular Error(�) Translation Error(m)
Mean Max Mean Max

LLF-DFE 0.058 0.861 0.024 0.813
FEF-DFE 0.057 0.790 0.026 0.759

FEF 0.700 2.132 0.954 8.416
Ours 0.056 0.875 0.018 0.932

Table 3. Comparison w/o the DFE layer. The usage of DFE layer
is crucial as there is severe performance degradation as shown in
Method FEF. When only partial features are used in DFE layer, it
gives competitive results as shown in Method LLF-DFE and FEF-
DFE, while ours yields the best performance.

Corresponding Points Generation To demonstrate the
effectiveness of the CPG, we directly search the best corre-
sponding point among the existing points in the target point
cloud taking the predicted transformation into considera-
tion. Specifically, for each source keypoint, the point with
the highest similarity score in the feature space in the target
neighboring field is chosen as the corresponding point. It
turns out that it is unable to converge using our proposed
loss function. The reason might be that the proportion of
the positive and negative samples is extremely unbalanced.

Loss In Section 3.5, we propose to use the combination
of two losses to incoorporate the global geometric informa-
tion, and a balancing factor ↵ is introduced. In order to
demonstrate the necessity of using both the losses, we sam-
ple 11 values of ↵ from 0.0 to 1.0 and observe the registra-
tion accuracy. In Figure 4, we find that the balancing factor
of 0.0 and 1.0 obviously give larger angular and transla-
tional mean errors. This clearly demonstrates the effective-
ness of the combined loss function design. It is also quite
interesting that it yields similar accuracies for ↵ between
0.1 - 0.9. We conclude that this might be because of the

powerful generalization capability of deep neural networks.
The parameters in the networks can be well generalized to
adopt any ↵ values away from 0.0 or 1.0. Therefore, we use
0.6 in all our experiments.

0.026 0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.019
0.031

3.783

1.211 0.904 0.867 0.953 0.869 0.875 1.098 1.008 0.873 1.012

0.069 0.057 0.056 0.057 0.056 0.056 0.056 0.056 0.056 0.056 0.074

1.738 1.552
1.001 1.053 1.084 0.990 0.932

1.343 0.997 0.974 1.227

0.01

0.08

1.00

12.00

0.02

0.13

1.00

8.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean Angular Error Max Angular Error Mean Trans. Error Max Trans. Error

Figure 4. Registration accuracy comparison with different ↵ val-
ues in the loss function. Any ↵ values away from 0.0 or 1.0 give
similarly good accuracies. This demonstrates the powerful gener-
alization capability of deep neural networks.

4.4. Visualizations

In this section, to offer better insights on the behavior of
the network, we visualize the keypoints chosen by the point
weighting layer and the similarity probability distribution
estimated in the CPG layer.

Visualization of Keypoints In Section 3.1, we propose
to extract semantic features using PointNet++ [31], and
weigh them using a MLP network structure. We expect
that our end-to-end framework can intelligently learn to se-
lect keypoints that are unique and stable on stationary ob-
jects, such as traffic poles, tree trunks, but avoid the key-
points on dynamic objects, such as pedestrians, cars. In ad-
dition to this, we duplicate our network in Section 3.6. The
front network with the 3D CNNs CPG layer are expected
to find meaningful keypoints those have good constraints in
all six degrees of freedom. While the back network with
the 1D CNNs are expected to find those are good in z, roll
and pitch directions. In Figure 5, the detected keypoints
are shown compared with the camera photo and the Li-
DAR scan in the real scene. The pink and grey keypoints
are detected by the front and back network, respectively.
We observe that the distribution of keypoints match our ex-
pectations as the pink keypoints mostly appear on objects
with salient features, such as tree trunks and poles, while
the grey ones are mostly on the ground. Even in the scene
where there are lots of cars or buses, none of keypoints are
detected on them. This demonstrates that our end-to-end
framework is capable to detect the keypoints those are good
for the point cloud registration task.

Visualization of CPG Distribution The CPG layer in
Section 3.4 estimates the matching similarity probability of
each keypoint to its candidate corresponding ones. Figure 6
depicts the estimated probabilities by visualizing them in x
and y dimensions with 9 fixed z values. On the left and
right, the black and pink points are the keypoints from the

Figure 5. Visualization of the detected keypoints by the point weighting layer. The pink and grey keypoints are detected by the front and
back network, respectively. The pink ones appear on stationary objects, such as tree trunks and poles. The grey ones are mostly on the
ground, as expected.

a

b

c

d

e

a

b

c

d

e

After Registration

a’

b’

c’

d’

e’

a’

b’

c’

d’

e’

Before Registration

Figure 6. Illustrate the matching similarity probabilities of each keypoint to its matching candidates by visualizing them in x and y
dimensions with 9 fixed z values. The black and pink points are the detected keypoints in the source point cloud and the generated ones in
the target, respectively. The effectiveness of the registration process is shown on the left (before) and right (after).

source point cloud and the generated ones in the target, re-
spectively. It is seen that the keypoints detected are suffi-
ciently salient that the matching probabilities are concen-
tratedly distributed.

5. Conclusion

We have presented an end-to-end framework for the
point cloud registration task. The novel designs in our net-
work make our learning-based system achieve the compa-
rable registration accuracy to the state-of-the-art geomet-
ric methods. It has been shown that our network can
learn which features are good for the registration task au-
tomatically, yielding an outlier rejection capability. Com-
paring to ICP and its variants, it benefits from deep fea-
tures and is more robust to inaccurate initial poses. Based

on the GPU acceleration in the state-of-the-art deep learn-
ing frameworks, it has good runtime efficiency that is no
worse than common geometric methods. We believe that
our method is attractive and has considerable potential for
many applications. In a further extension of this work, we
will explore ways to improve the generalization capability
of the trained model with more LiDAR models in broader
application scenarios.

ACKNOWLEDGMENT

This work is supported by Baidu ADT in conjunc-
tion with the Apollo Project (http://apollo.auto/). Natasha
Dsouza helped with the text editing and proof reading.
Runxin He and Yijun Yuan helped with the DeepVCP‘s de-
ployment on clusters.

http://apollo.auto/

References

[1] Mikaela Angelina Uy and Gim Hee Lee. PointNetVLAD:
Deep point cloud based retrieval for large-scale place recog-
nition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4470–4479,
2018. 2

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
SegNet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (PAMI), 39(12):2481–2495,
2017. 1

[3] Paul J. Besl and Neil D. McKay. A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14(2):239–256, Feb 1992. 2, 5, 6
[4] Leo Breiman. Random forests. Machine learning, 45(1):5–

32, 2001. 2
[5] Xinjing Cheng, Peng Wang, and Ruigang Yang. Learning

depth with convolutional spatial propagation network. arXiv

preprint arXiv:1810.02695, 2018. 1
[6] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPF-

FoldNet: Unsupervised learning of rotation invariant 3D lo-
cal descriptors. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 602–618, 2018. 3
[7] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet:

Global context aware local features for robust 3D point
matching. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 1, 2, 3,
4

[8] Jean-Emmanuel Deschaud. IMLS-SLAM: scan-to-model
matching based on 3D data. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation (ICRA),
pages 2480–2485. IEEE, 2018. 1

[9] Li Ding and Chen Feng. DeepMapping: Unsupervised map
estimation from multiple point clouds. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). IEEE, 2019. 1
[10] David Droeschel and Sven Behnke. Efficient continuous-

time SLAM for 3D LiDAR-based online mapping. In Pro-

ceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pages 1–9. IEEE, 2018. 1
[11] Gil Elbaz, Tamar Avraham, and Anath Fischer. 3D point

cloud registration for localization using a deep neural net-
work auto-encoder. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages
4631–4640, 2017. 1, 2

[12] Pete Gadomski. C++ implementation of the coherent point
drift point set registration algorithm. Available at https:
//github.com/gadomski/cpd, version v0.5.1. 5

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the KITTI vision benchmark
suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3354–3361.
IEEE, 2012. 2, 5

[14] Georgios Georgakis, Srikrishna Karanam, Ziyan Wu, Jan
Ernst, and Jana Košecká. End-to-end learning of keypoint
detector and descriptor for pose invariant 3D matching. In
Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1965–1973, 2018.
2

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 580–587, 2014. 1
[16] Zan Gojcic, Caifa Zhou, Jan D Wegner, and Andreas Wieser.

The perfect match: 3D point cloud matching with smoothed
densities. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5545–
5554, 2019. 3

[17] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong
Li. Rotation averaging. International Journal of Computer

Vision (IJCV), 103(3):267–305, 2013. 6
[18] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu.

Training deep networks with structured layers by matrix
backpropagation. arXiv preprint arXiv:1509.07838, 2015.
5

[19] Kaijin Ji, Huiyan Chen, Huijun Di, Jianwei Gong, Guang-
ming Xiong, Jianyong Qi, and Tao Yi. CPFG-SLAM: a ro-
bust simultaneous localization and mapping based on LiDAR
in off-road environment. In Proceedings of the IEEE Intelli-

gent Vehicles Symposium (IV), pages 650–655. IEEE, 2018.
1

[20] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ni-
nomiya, Kazuya Takeda, and Tsuyoshi Hamada. An open
approach to autonomous vehicles. IEEE Micro, 35(6):60–
68, Nov 2015. 1

[21] Marc Khoury, Qian-Yi Zhou, and Vladlen Koltun. Learning
compact geometric features. In Proceedings of the IEEE In-

ternational Conference on Computer Vision (ICCV), pages
153–161, 2017. 2

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Proceedings of the Advances in Neural Informa-

tion Processing Systems (NIPS), pages 1097–1105, 2012. 1
[23] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point
cloud analysis. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages
8895–8904, 2019. 3

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3431–3440, 2015. 1
[25] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and

Shiyu Song. L3-Net: Towards learning based LiDAR lo-
calization for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). IEEE, 2019. 1, 2, 3, 4, 5
[26] Andriy Myronenko and Xubo Song. Point set registration:

Coherent point drift. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 32(12):2262–2275, Dec
2010. 2, 5, 6

[27] Frank Neuhaus, Tilman Koß, Robert Kohnen, and Dietrich
Paulus. MC2SLAM: Real-time inertial LiDAR odometry us-
ing two-scan motion compensation. In Proceedings of the

https://github.com/gadomski/cpd
https://github.com/gadomski/cpd

German Conference on Pattern Recognition (GCPR), pages
60–72. Springer, 2018. 1

[28] Artem L Pavlov, Grigory WV Ovchinnikov, Dmitry Yu
Derbyshev, Dzmitry Tsetserukou, and Ivan V Oseledets.
AA-ICP: Iterative closest point with Anderson acceleration.
In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 1–6. IEEE, 2018.
5, 6

[29] François Pomerleau, Francis Colas, Roland Siegwart, et al.
A review of point cloud registration algorithms for mobile
robotics. Foundations and Trends R� in Robotics, 4(1):1–104,
2015. 2

[30] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages
77–85, July 2017. 2, 3

[31] Charles R. Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in
a metric space. In Proceedings of the Advances in Neural

Information Processing Systems (NIPS), pages 5099–5108,
2017. 2, 3, 7

[32] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 779–
788, 2016. 1

[33] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (FPFH) for 3-D registration. In Pro-

ceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pages 3212–3217, May 2009. 4
[34] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point

cloud library (PCL). In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011. 5

[35] Samuele Salti, Federico Tombari, Riccardo Spezialetti, and
Luigi Di Stefano. Learning a descriptor-specific 3D keypoint
detector. In Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV), pages 2318–2326, 2015.
2

[36] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d:
Learning 3d scene structure from a single still image. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 31(5):824–840, 2008. 1
[37] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun.

Generalized-ICP. In Proceedings of the Robotics: Science

and Systems (RSS), 06 2009. 2, 5, 6
[38] Takaaki Shiratori, Jérôme Berclaz, Michael Harville, Chin-

tan Shah, Taoyu Li, Yasuyuki Matsushita, and Stephen
Shiller. Efficient large-scale point cloud registration using
loop closures. In Proceedings of the International Confer-

ence on 3D Vision (3DV), pages 232–240. IEEE, 2015. 1
[39] Todor Stoyanov, Martin Magnusson, Henrik Andreasson,

and Achim J Lilienthal. Fast and accurate scan registration
through minimization of the distance between compact 3D
NDT representations. The International Journal of Robotics

Research (IJRR), 31(12):1377–1393, 2012. 2, 5, 6

[40] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-
laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas
Brox. DeMoN: Depth and motion network for learning
monocular stereo. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages
5038–5047, 2017. 1

[41] Martin Velas, Michal Spanel, Michal Hradis, and Adam Her-
out. CNN for IMU assisted odometry estimation using velo-
dyne LiDAR. In Proceedings of the IEEE International

Conference on Autonomous Robot Systems and Competitions

(ICARSC), pages 71–77. IEEE, 2018. 2
[42] Guowei Wan, Xiaolong Yang, Renlan Cai, Hao Li, Yao

Zhou, Hao Wang, and Shiyu Song. Robust and precise vehi-
cle localization based on multi-sensor fusion in diverse city
scenes. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4670–4677.
IEEE, 2018. 1

[43] Jay M Wong, Vincent Kee, Tiffany Le, Syler Wagner, Gian-
Luca Mariottini, Abraham Schneider, Lei Hamilton, Rahul
Chipalkatty, Mitchell Hebert, David MS Johnson, et al.
SegICP: Integrated deep semantic segmentation and pose es-
timation. In Proceedings of the IEEE International Confer-

ence on Intelligent Robots and Systems (IROS), pages 5784–
5789. IEEE, 2017. 1

[44] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde
Jia. Go-ICP: A globally optimal solution to 3D ICP point-
set registration. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 38(11):2241–2254, 2015. 2
[45] Sheng Yang, Xiaoling Zhu, Xing Nian, Lu Feng, Xiaozhi

Qu, and Teng Mal. A robust pose graph approach for city
scale LiDAR mapping. In Proceedings of the IEEE Interna-

tional Conference on Intelligent Robots and Systems (IROS),
pages 1175–1182. IEEE, 2018. 1

[46] Zi Jian Yew and Gim Hee Lee. 3DFeat-Net: Weakly super-
vised local 3D features for point cloud registration. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 630–646. Springer, 2018. 2, 3, 5, 6
[47] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical

discrete distribution decomposition for match density esti-
mation. arXiv preprint arXiv:1812.06264, 2018. 1

[48] Keisuke Yoneda, Hossein Tehrani, Takashi Ogawa, Naohisa
Hukuyama, and Seiichi Mita. LiDAR scan feature for lo-
calization with highly precise 3-D map. In Proceedings of

the IEEE Intelligent Vehicles Symposium (IV), pages 1345–
1350, June 2014. 1

[49] Andy Zeng, Shuran Song, Matthias Nießner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:
Learning local geometric descriptors from RGB-D recon-
structions. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017. 1, 2,
4

[50] Ji Zhang and Sanjiv Singh. LOAM: LiDAR odometry and
mapping in real-time. In Proceedings of the Robotics: Sci-

ence and Systems (RSS), volume 2, page 9, 2014. 1
[51] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.

DeepTAM: Deep tracking and mapping. In Proceedings

of the European Conference on Computer Vision (ECCV),
pages 822–838, 2018. 1

DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration

ICCV 2019 Supplementary Material
Weixin Lu Guowei Wan Yao Zhou Xiangyu Fu Pengfei Yuan Shiyu Song⇤

Baidu Autonomous Driving Technology Department (ADT)
{luweixin, wanguowei, zhouyao, fuxiangyu, yuanpengfei, songshiyu}@baidu.com

1. Implementation Details

We introduce our implementation details in this section.
In the FE layer, a simplified PointNet++ is applied, in which

only three set abstraction layers with a single scale grouping
layer are used to sub-sample points into groups with sizes 4096,
1024, 256, and the MLPs of three hierarchical PointNet layer
are 32⇥ 32, 32⇥ 64, 64⇥ 64 in the sub-sampling stage, and
64⇥ 64, 32⇥ 32, 32⇥ 32⇥ 32 in the up-sampling stage. This
is followed by a fully connected layer with 32 kernels and
a dropout layer with the keeping probability as 0.7 to avoid
overfitting. The MLP in the point weighting layer is 16⇥ 8⇥ 1,
and only the top N = 64 points are selected in the source point
cloud according to their learned weights in the descending order.
The searching range d and the number of neighboring points
K to be collected in the DFE step are set to be 1m and 32,
respectively. In the mini-PointNet structure of the DFE layer,
the MLP is 32⇥ 32⇥ 32. The 3D CNNs settings in the CPG
step are Conv3d (16, 3, 1) - Conv3d(4, 3, 1) - Conv3d (1, 3, 1).
The grid voxels are set as (2⇥2.0

0.4 + 1, 2⇥2.0
0.4 + 1, 2⇥2.0

0.25 + 1).
The proposed network is trained with the batch size as 1,

the learning rate as 0.01 and the decay rate as 0.7 with the
decay step to be 10000. During the training stage, we conduct
the data augmentation and supervised training by adding a
uniformly distributed random noise of [0.0 ⇠ 1.0]m in the x, y
and z dimensions, and [0 ⇠ 1.0]� in the roll, yaw, and pitch
dimensions to the given ground truth. We randomly divide the
dataset into the training and validation set, yielding the ratio of
training to validation as 4 to 1. We stop at 200 epochs when
there is no performance gain.

We list the configuration settings of all the baseline methods
in Table 1. We use these parameters in the experiments across
all the KITTI, Apollo-SouthBay and 3DMatch datasets.

2. More Implementation Details of the AA-ICP

The Euler angles are used as the rotation representation
when solving the optimal weighting terms ↵ based on the his-
tory of the latest iterations and residuals in the original imple-
mentation of the AA-ICP [2]. It is known that the Euler angles
have the singularity problem. In rare cases when we test using
the Apollo-SouthBay dataset, we noted that it caused the esti-
mated Euler angles to flip across the axes in our experimental
results using the original implementation. Certainly, this results
in the algorithm failing to converge. Therefore, we modified the
implementation by limiting the valid value range of the Euler
angles (↵,�, �) to be [-90, 90]�, [-180, 180]� and [-180, 180]�

⇤Author to whom correspondence should be addressed

and the interpolation between the two orientations will always
use the shortest path. The comparison of the results using the
original and modified version is shown in Table 2.

3. More Results on Other Datasets

We evaluate the performance of the proposed DeepVCP
using datasets from the sensors other than the Velodyne HDL64
LiDAR, including the 3DMatch [3] and the TLS [1] dataset.

3.1. The 3DMatch Dataset

The point clouds in the 3DMatch dataset are collected by
RGB-D sensors (e.g. Microsoft Kinect, Intel RealSense). Most
methods do not converge when we use the original point cloud
pairs in the 3DMatch dataset, due to the very small overlap
between each pair. Therefore, we synthesize the new data pair
by downsampling one of the point clouds to approximately
150, 000 points, duplicating and shifting it with large random
initial transformations, and finally adding random errors of less
than 0.01m to each point in the new point cloud. With the help
of the sequential storage in 3DMatch, we take the first 90% and
the last 90% points in each point cloud to let the two generated
point clouds have an approximate 90% overlap. To conduct
a comprehensive evaluation, we gradually increase the initial
pose errors during our experiments. The complete results are
summarized in in Tab. 3 and Tab. 4. We consider the results
with the maximum errors larger than 5.0m and 80.0� as non-
convergence, marked as “N/A” in the table. The mean value
calculation is computed by ignoring the non-convergence cases
to show the average performance when they work normally.

The searching range d and the grid voxel size are set as
0.8m and (2⇥4.0

0.5 + 1, 2⇥4.0
0.5 + 1, 2⇥4.0

0.5 + 1), respectively. But
to keep CPD not intractable, we once again downsample the
point clouds using a voxel size of 0.015m leaving about 50, 000
points. All other settings are consistent with the experiments
in the main conference proceeding. As can be seen, the perfor-
mance of the ICP family and the NDT gradually deteriorates as
the initial pose errors increase while the CPD and 3DFeat-Net
methods are still stable. The CPD and 3DFeat-Net methods
match globally so they are expected to be insensitive to the ini-
tial errors. By using deep features that are powerful enough to
find correct matching keypoints, our DeepVCP achieves good
accuracy under large initial errors.

3.2. The TLS dataset

The TLS dataset [1] is from Terrestrial Laser Scanners
(TLS), e.g. a Rigel LiDAR. We downsample the original
point clouds with a voxel grid of 0.0625m and leave about

variable value

Registration (Base Class in PCL)

nr iterations 0
max iterations 600

ransac iterations 0
transformation epsilon 1e-6

transformation rotation epsilon 0.0
inlier threshold 0.05

min number correspondences 3 (4 for G-ICP)
euclidean fitness epsilon 1e-4

corr dist threshold 1.0 (0.5 for ICP-Po2Pl)

IterativeClosestPoint (ICP)

x idx offset 0
y idx offset 0
z idx offset 0

nx idx offset 0
ny idx offset 0
nz idx offset 0

GeneralizedIterativeClosestPoint (G-ICP)

k correspondences 20
gicp epsilon 0.001

rotation epsilon 2e-3
mahalanobis 0

max inner iterations 20

NormalDistributionsTransform (NDT)
resolution 1.0 (0.1 for 3DMatch dataset)
step size 0.1 (0.9 for 3DMatch dataset)

outlier ratio 0.55

AndersonIterativeClosestPoint (AA-ICP)

alpha limit min -10
alpha limit max 10

beta 1.0
small step threshold 3

error overflow threshold 0.05

Transform (CPD)

m correspondence false
m max iterations 200

m normalize true
m outliers 0.2
m sigma2 0.0

m tolerance 1e-5

Rigid (CPD) m reflections false
m scale false

Table 1. The configuration settings of the baseline methods in the experiments. The ICP family and the NDT all inherit from a common base class
in which the parameters are shared across all these methods.

Dataset Method Angular Error(�) Translation Error(m)
Mean Max Mean Max

KITTI Original 0.152 1.406 0.096 1.813
Modified 0.145 1.406 0.088 2.020

Apollo-SouthBay Original 0.363 179.9 0.119 5.675
Modified 0.054 1.087 0.109 5.243

Table 2. Comparison of the original and modified version of the
AA-ICP implementation. The issue of irregularly large maximum
angle errors in rare cases of Apollo-SouthBay dataset is resolved.

130,000 points as our input. We once again adjust the search-
ing range d and the grid voxels’ size accordingly, to 0.5m and

(2⇥2.0
0.4 + 1, 2⇥2.0

0.4 + 1, 2⇥2.0
0.4 + 1). Three different scenes in

the dataset are evaluated. Please note, that we certainly can not
train the network adequately with this little amount of data. It
is highly possible that the results are overfitted, and therefore
are only visually evaluated. The registration results of a court-
yard, an office and a forest are shown in Figure 1, Figure 2 and
Figure 3, respectively.

Before Registration After Registration

Figure 1. The registration result of a courtyard from the TLS dataset.
The point cloud pair is differently colored. From the zoomed figures,
we observe that the mountain terrain in the center and the walls of the
building at the bottom are aligned well after the registration.

Before Registration After Registration

Figure 2. The registration result of an office from the TLS dataset. As
shown in the zoomed figures, the desks, chairs, and walls are aligned
well after the registration.

Before Registration After Registration

Figure 3. The registration result of a forest from the TLS dataset.
From the zoomed figures, the trunks and the tripod are aligned well
after the registration.

References

[1] TLS Dataset. http://www.igp.ethz.ch/, 2017.
[2] Artem Leonidovich Pavlov, George Ovchinnikov, D. Yu. Derby-

shev, Dzmitry Tsetserukou, and Ivan Oseledets. AA-ICP: Iterative
closest point with Anderson acceleration. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages
1–6, May 2018.

[3] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher,
Jianxiong Xiao, and Thomas Funkhouser. 3DMatch: Learning
local geometric descriptors from RGB-D reconstructions. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

Initial Error ICP-Po2Po ICP-Po2Pl G-ICP AA-ICP NDT-P2D CPD 3DFeat-Net Ours
(m) (m) (m) (m) (m) (m) (m) (m)

(0.1m, 1.0�) Mean 0.023 0.012 0.012 0.018 0.005 0.004 0.072 0.019
Max 0.092 0.053 0.065 0.097 0.017 0.024 0.257 0.073

(0.2m, 2.0�) Mean 0.024 0.012 0.015 0.018 0.009 0.004 0.072 0.021
Max 0.091 0.054 0.120 0.097 0.206 0.024 0.257 0.065

(0.3m, 3.0�) Mean 0.025 0.012 0.013 0.019 0.052 0.004 0.072 0.018
Max 0.092 0.056 0.044 0.097 0.800 0.024 0.257 0.071

(0.4m, 4.0�) Mean 0.026 0.012 0.014 0.019 0.170 0.004 0.072 0.019
Max 0.093 0.055 0.055 0.097 1.219 0.024 0.257 0.052

(0.5m, 5.0�) Mean 0.026 0.012 0.014 0.021 0.282 0.004 0.072 0.019
Max 0.093 0.055 0.051 0.258 1.535 0.024 0.257 0.060

(0.6m, 6.0�) Mean 0.026 0.012 0.015 0.019 0.478 0.004 0.072 0.018
Max 0.093 0.056 0.062 0.119 4.804 0.024 0.257 0.053

(0.7m, 7.0�) Mean 0.026 0.012 0.015 0.019 0.514 0.004 0.072 0.018
Max 0.094 0.055 0.064 0.098 N/A 0.024 0.257 0.064

(0.8m, 8.0�) Mean 0.026 0.012 0.017 0.018 0.709 0.004 0.072 0.017
Max 0.094 0.055 0.153 0.098 4.889 0.024 0.257 0.057

(0.9m, 9.0�) Mean 0.026 0.012 0.020 0.024 0.817 0.004 0.072 0.017
Max 0.093 0.055 0.522 0.640 4.818 0.024 0.257 0.052

(1.0m, 10.0�) Mean 0.026 0.035 0.026 0.024 1.007 0.004 0.072 0.016
Max 0.094 2.340 0.599 0.585 4.850 0.024 0.257 0.050

(1.1m, 11.0�) Mean 0.027 0.075 0.022 0.120 0.949 0.004 0.072 0.019
Max 0.093 2.502 0.390 5.147 4.120 0.024 0.257 0.077

(1.2m, 12.0�) Mean 0.089 0.059 0.057 0.152 1.243 0.004 0.072 0.018
Max 4.334 2.508 2.312 4.932 4.915 0.024 0.257 0.062

(1.3m, 13.0�) Mean 0.114 0.162 0.029 0.118 1.349 0.004 0.072 0.018
Max 4.336 4.804 0.805 4.715 4.898 0.024 0.257 0.066

(1.4m, 14.0�) Mean 0.155 0.192 0.116 0.226 1.332 0.004 0.072 0.018
Max 4.336 4.822 3.436 4.715 4.890 0.024 0.257 0.077

(1.5m, 15.0�) Mean 0.161 0.163 0.232 0.310 1.379 0.004 0.072 0.018
Max 4.713 4.206 4.669 4.716 N/A 0.024 0.257 0.052

(1.6m, 16.0�) Mean 0.197 0.094 0.250 0.342 1.590 0.004 0.072 0.019
Max 4.712 3.052 4.505 4.715 4.884 0.024 0.257 0.055

(1.7m, 17.0�) Mean 0.229 0.286 0.238 0.323 1.678 0.004 0.072 0.017
Max N/A N/A 4.694 N/A 4.952 0.024 0.257 0.063

(1.8m, 18.0�) Mean 0.276 0.345 0.314 0.241 1.681 0.004 0.072 0.017
Max 6.365 N/A 4.704 4.714 4.881 0.024 0.257 0.059

(1.9m, 19.0�) Mean 0.244 0.380 0.316 0.376 1.768 0.004 0.072 0.017
Max N/A N/A 4.547 N/A N/A 0.024 0.257 0.048

(2.0m, 20.0�) Mean 0.387 0.343 0.360 0.325 1.826 0.004 0.072 0.017
Max N/A N/A 4.505 N/A 4.885 0.024 0.257 0.046

Table 3. The performance evaluation given different initial errors by illustrating the translational errors. The performance of the ICP family and
the NDT gradually deteriorates as the initial pose errors increase. the CPD and 3DFeat-Net methods are not influenced by the initial errors as they
are global methods. Our DeepVCP achieves high accuracy consistently demonstrating the matching robustness using deep features.

Initial Error ICP-Po2Po ICP-Po2Pl G-ICP AA-ICP NDT-P2D CPD 3DFeat-Net Ours
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

(0.1m, 1.0�) Mean 0.594 0.285 0.254 0.401 0.104 0.070 1.654 0.465
Max 2.470 1.264 1.247 2.451 0.346 0.427 6.129 1.538

(0.2m, 2.0�) Mean 0.636 0.291 0.291 0.405 0.213 0.070 1.654 0.513
Max 2.623 1.348 1.558 2.464 7.420 0.427 6.129 1.359

(0.3m, 3.0�) Mean 0.660 0.293 0.270 0.404 0.856 0.070 1.654 0.446
Max 2.658 1.439 1.097 2.457 15.47 0.427 6.129 1.419

(0.4m, 4.0�) Mean 0.677 0.294 0.289 0.419 3.238 0.070 1.654 0.448
Max 2.628 1.453 1.068 2.465 33.00 0.427 6.129 1.198

(0.5m, 5.0�) Mean 0.690 0.298 0.288 0.480 5.819 0.070 1.654 0.465
Max 2.627 1.458 1.071 7.047 50.14 0.427 6.129 1.470

(0.6m, 6.0�) Mean 0.701 0.302 0.305 0.440 7.577 0.070 1.654 0.452
Max 2.613 1.457 1.023 4.547 N/A 0.427 6.129 1.158

(0.7m, 7.0�) Mean 0.702 0.310 0.305 0.401 9.042 0.070 1.654 0.456
Max 2.603 1.457 1.060 2.448 N/A 0.427 6.129 1.416

(0.8m, 8.0�) Mean 0.708 0.313 0.354 0.380 9.538 0.070 1.654 0.437
Max 2.633 1.453 2.806 2.543 N/A 0.427 6.129 1.220

(0.9m, 9.0�) Mean 0.706 0.309 0.320 0.698 12.12 0.070 1.654 0.446
Max 2.659 1.452 1.777 30.93 N/A 0.427 6.129 1.427

(1.0m, 10.0�) Mean 0.700 0.729 0.595 0.732 15.76 0.070 1.654 0.406
Max 2.679 42.69 24.84 33.27 N/A 0.427 6.129 1.386

(1.1m, 11.0�) Mean 0.706 1.791 0.623 0.692 14.49 0.070 1.654 0.440
Max 2.697 63.15 26.29 N/A N/A 0.427 6.129 1.423

(1.2m, 12.0�) Mean 1.077 1.680 1.077 1.166 17.92 0.070 1.654 0.458
Max N/A 63.15 N/A N/A N/A 0.427 6.129 1.785

(1.3m, 13.0�) Mean 1.517 2.147 0.648 1.161 17.68 0.070 1.654 0.391
Max N/A N/A N/A N/A N/A 0.427 6.129 1.275

(1.4m, 14.0�) Mean 1.516 1.935 1.872 1.292 17.48 0.070 1.654 0.445
Max N/A N/A N/A N/A N/A 0.427 6.129 1.416

(1.5m, 15.0�) Mean 1.513 1.875 1.513 0.717 18.43 0.070 1.654 0.440
Max N/A N/A N/A N/A N/A 0.427 6.129 1.176

(1.6m, 16.0�) Mean 1.078 1.763 2.306 1.760 17.27 0.070 1.654 0.481
Max N/A N/A N/A N/A N/A 0.427 6.129 1.330

(1.7m, 17.0�) Mean 1.874 1.770 2.722 1.787 16.85 0.070 1.654 0.446
Max N/A N/A N/A N/A N/A 0.427 6.129 1.338

(1.8m, 18.0�) Mean 2.263 1.836 3.922 0.894 20.44 0.070 1.654 0.419
Max N/A N/A N/A N/A N/A 0.427 6.129 1.340

(1.9m, 19.0�) Mean 2.275 2.226 2.628 3.124 21.49 0.070 1.654 0.423
Max N/A N/A N/A N/A N/A 0.427 6.129 1.142

(2.0m, 20.0�) Mean 2.725 1.665 2.516 1.782 18.70 0.070 1.654 0.423
Max N/A N/A N/A N/A N/A 0.427 6.129 1.140

Table 4. The performance evaluation given different initial errors by illustrating angular errors. The performance of the ICP family and the NDT
gradually deteriorates as the initial pose errors increase. The CPD and 3DFeat-Net methods are not influenced by the initial errors as they are
global methods. Our DeepVCP achieves high accuracy consistently, demonstrating the matching robustness using deep features.

